翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

compact closed category : ウィキペディア英語版
compact closed category
In category theory, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category with finite-dimensional vector spaces as objects and linear maps as morphisms.
== Symmetric compact closed category ==

A symmetric monoidal category (\mathbf,\otimes,I) is compact closed if every object A \in C has a dual object. If this holds, the dual object is unique up to canonical isomorphism, and it is denoted A^
*.
In a bit more detail, an object A^
* is called the dual of A if it is equipped with two morphisms called the unit \eta_A:I\to A^
*\otimes A and the counit \varepsilon_A:A\otimes A^
*\to I, satisfying the equations
:\lambda_A\circ(\varepsilon_A\otimes A)\circ\alpha_^\circ(A\otimes\eta_A)\circ\rho_A^=\mathrm_A
and
:\rho_\circ(A^
*\otimes\varepsilon_A)\circ\alpha_\circ(\eta_A\otimes A^
*)\circ\lambda_^=\mathrm_,
where \lambda,\rho are the introduction of the unit on the left and right, respectively.
For clarity, we rewrite the above compositions diagramatically. In order for (\mathbf,\otimes,I) to be compact closed, we need the following composites to equal \mathrm_A:
: A\xrightarrow A\otimes I\xrightarrowA\otimes (A^
*\otimes A)\xrightarrow (A\otimes A^
*)\otimes A\xrightarrow I\otimes A\xrightarrow A
and \mathrm_:
: A^
*\xrightarrow I\otimes A^
*\xrightarrow(A^
*\otimes A)\otimes A^
*\xrightarrow A^
*\otimes (A\otimes A^
*)\xrightarrow A^
*\otimes I\xrightarrow A^
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「compact closed category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.